

Developing Curricula for Artificial Intelligence and Robotics (DeCAIR) 618535-EPP-1-2020-1-JO-EPPKA2-CBHE-JP

DeCAIR Course Syllabus Form

Author(s)	lyad Jafar				
Author Organization Name(s)	The University of Jordan				
Work Package Number & Title	Work Package 2: Development of new MSc and BSc programs in AIR				
Activity Number & Title	Activity 2.2: Designing and developing syllabi and content for the agreed upon courses in the new programs				
Work Package Leader	Francesco Masulli, University of Genoa				
Due Date of Delivery	1/2/2022	Project Month	M14		
Submission Date	1/11/2021	Project Month	M11		

Revision History

Version	Date	Author	Description	Action *	Page(s)
1	1/11/2021	lyad Jafar	Computer Vision syllabus drafted	С	1-6
2	8/12/2021	lyad Jafar	Revised based on 27/11/2021 meeting	U	1-6
3					
4					

(*) Action: C = Creation, I = Insert, U = Update, R = Replace, D = Delete

Disclaimer

This project has been co-funded by the Erasmus+ Programme of the European Union.

You are free to share, copy and redistribute the material in any medium or format, as well as adapt, transform, and build upon the material for any purpose, even commercially, provided that you give appropriate credit to the project and the partnership, and indicate if any changes were made. You may do so in any reasonable manner, but not in any way that suggests the partnership, or the European Commission endorses you or your use. You may not apply legal terms or technological measures that legally restrict others from using the material in the same manner that you did.

Copyright © DeCAIR Consortium, 2021-2024

Email: <u>DeCAIR@ju.edu.jo</u>

Project Website: <u>http://DeCAIR.ju.edu.jo/</u>

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Course title	Computer Vision				
Course number	0907752				
Credit hours (lecture and lab)	3 (3+0)				
ECTS (weekly contact and self- study load)	6 (3+3)				
Prerequisites/co-requisites by course number and name	Applie	Applied Machine Learning (0907743)			
Prerequisites by topic (other than the formal prerequisites above)	Students are assumed to have good background in mathematics, particularly, calculus, linear algebra, statistics, probability, good background in machine learning and Python/MATLAB programming skills				
Level and type (compulsory, elective)	First year, compulsory				
Year of study and semester	First y	ear, second semester			
Catalogue description	Introduction to computer vision including fundamentals of computer vision at the low, medium and high levels. Topics include image formation, camera imaging geometry, feature detection and matching, stereo, motion estimation and tracking, video processing, deep-learning algorithms for image classification, object recognition, object detection and scene understanding. The course focuses on the practical aspects and implementation of these topics through homework assignments and term project.				
Objectives	 Introduce students to the computer vision concepts at different levels. Introduce students to the practical techniques and tools used in computer vision (Python, Scikit-Learn, Keras, TensorFlow and Opencv). Enable the students to gain practical skills in computer vision problems. 				
Intended learning outcomes	No	successful completion of this course, students will be able Intended learning Outcome (ILO)	Program learning outcome (PLO)*		
	1	Demonstrate a sound understanding of the main topics in computer vision.	1		
	2	Solve real world problems in the computer vision domain.	2,3,4		
	3	Communicate the development of a solution for a computer vision problem through a detailed technical report and a short presentation.	4,5,6		
	4	Use appropriate and common tools and libraries to solve real-world problems in computer vision. (*) The PLOs are listed in the appendix	2,3,5		

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Teaching and learning methods	Development of ILOs is promoted through the following teaching and learning methods:				
	• The student attends the class presentations and participates in the discussions.				
	• The student joins the related online team/group and participates in its discussions.				
	 The student studies the reference material, including books and videos. The student solves the programming assignments in computer vision 				
	 The student solves the programming assignments in computer vision. The student carries out a term project for solving a problem in the computer vision domain. 				
	 The student develops a professional report for the term report. The student presents the term project in class. 				
	 The student presents the term project in class. The AI lab is open for the students to practice the practical aspects and solve the programming homework assignments. 				
Learning material type	Textbook, class handouts, some instructor keynotes, selected YouTube videos, and access to a personal computer and the internet.				
Resources and references	A- Required book(s), assigned reading and audio-visuals:				
	 Richard Szeliski , Computer Vision: Algorithms and Applications, 2nd Edition, Springer, 2021. 				
	2. Jan Erik Solem, Programming Computer Vision with Python, O'Reilly Media, 2012.				
	 M. Elgendy, Deep Learning for Vision Systems, 1st Edition, Manning, 2020. 				
	4. S. Khan et. al., A Guide to Convolutional Neural Networks for Computer Vision, Morgan & Claypool, 2018.				
	B- Recommended book(s), material and media:				
	5. D. Forsyth and J. Ponce Andries, Computer Vision: A Modern Approach, 22nd Edition, Pearson India ,2011.				
	 François Chollet, Deep Learning with Python, Manning Pub. 2018. Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts: Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media, Oct 2019. 				

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Topic outline and schedule	Week		Торіс		ILO	Resources
	1	li li	ntroductio	n	1	Resources
	2-3		age format		1,4	1,2
	23		-	transformations,	±,-+	1,2
				, The digital camera)		
	3-4		ge proces		1,4	1,2
		(Point Operators, Linear Filtering, Non-linear Filtering, Geometric Transformations)		-) :	-)-	
	5-6	_		d Matching	1,4	1,2
				d Contours, Contour	,	,
			-	ishing Points,		
			gmentatio			
	7		ion Estima		1,2,4	1,2
		(Translational Alig	gnment, Pa	arametric Motion,		
			ow, Layere			
	8		ure from N		1,2,4	1,2
		(Geometric intrinsio	c calibratio	on, Pose estimation,		
		Two-frame structu	ire from m	otion, Multi-frame		
		structure from moti	ion, Simult	aneous Localization		
		ar	nd Mappin	g)		
	9	Dep	oth Estimat	tion	1,2,4	1,2
		(Epipolar geometry, Sparse correspondence,				
				al methods, Global		
		optimization, Monocular depth estimation, Multi-				
			iew sterec			
			Reconstruc		1,2,4	1,2
				ng, Point-based		
				c representation,		
				recovering texture		
			s and albe			
	10	-	earning - I		1,2,4	1-4, 7
	10-14		Recognitio		1,2,4	1-4, 7
		•		lassification, Object		
			-	entation, Video		
	1 5		-	ind language)	224	1 4 7
	15	Projec	ct Presenta	ations	2,3,4	1-4, 7
Fuch setion to als	Orana arthur	ition to down outwate	o obiovono		مريز ما م ما مر	
Evaluation tools		assessment tools:	achieveme	ent of the ILOs are pro	ovided th	rougn the
	TOHOWINg	assessment tools.				
	A	ssessment tool	Mark	Topic(s)		Time
	Homew	Iomework assignments 10% Programming aspec		ts	W2-W14	
	Midtern		30%	Introduction throug		W8
		n project report and 20% Practical and preser			W15	
	presentation aspects					

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Developing Curricula for Artificial Intelligence and Robotics (DeCAIR) 618535-EPP-1-2020-1-JO-EPPKA2-CBHE-JP

	Final exam	40%	All material	W16			
	Total	100%					
Student requirements	The student should have	The student should have a computer and internet connection.					
Course policies	A- Attendance policies	:					
	• Attendance is required. Class attendance will be taken every class and the university polices will be enforced in this regard.						
	B- Absences from exam	B- Absences from exams and not submitting assignments on time:					
	 A makeup exam can be arranged for students with acceptable absence causes. Assignments submitted late, but before announcing or discussing the solution can be accepted with 25% penalty. The project report must be handed in in time. 						
	C- Health and safety procedures:						
	• All health and safety procedures of the university and the school should be followed.						
	D- Honesty policy regarding cheating, plagiarism, misbehavior:						
	 Open-book exams All submitted work must be of the submitting student. Other text or code must be properly quoted with clear source specification. Cheating will not be tolerated. 						
	E- Available university services that support achievement in the course:						
	 AI Lab for pracassignments. 	ns team and Mood ticing the practical uncements Facebo	aspects and solving th	e programming			
Additional information	None						

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Appendix

Learning Outcomes for the MSc in Artificial Intelligence and Robotics

Students who successfully complete the MSc in Artificial Intelligence and Robotics (AIR) will be able to:

- 1. Demonstrate a sound understanding of the main areas of AIR including artificial neural networks, machine learning, data science, industrial and service robots, and intelligent and autonomous robots.
- 2. Apply a critical understanding of essential concepts, principles and practices of AIR, and critically evaluate tools, techniques and results using structured arguments based on subject knowledge.
- 3. Apply the methods and techniques of the AIR fields in the design, analysis and deployment of AIR solutions and solving practical problems.
- 4. Demonstrate the ability to produce a substantial piece of research work from problem inception to implementation, documentation and presentation.
- 5. Demonstrate life-long learning, independent self-learning and continuous professional development skills in the AIR fields.
- 6. Demonstrate a sound understanding of the ethical, safety and social impact issues of AIR solutions and products.

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.